माना कि $\frac{\pi}{2} < x < \pi$ इस प्रकार है कि $\cot x=\frac{-5}{\sqrt{11}}$ है। तब
$\left(\sin \frac{11 x}{2}\right)(\sin 6 x-\cos 6 x)+\left(\cos \frac{11 x}{2}\right)(\sin 6 x+\cos 6 x)$ बराबर है
$\frac{\sqrt{11}-1}{2 \sqrt{3}}$
$\frac{\sqrt{11}+1}{2 \sqrt{3}}$
$\frac{\sqrt{11}+1}{3 \sqrt{2}}$
$\frac{\sqrt{11}-1}{3 \sqrt{2}}$
$\cos 20^\circ \cos 40^\circ \cos 80^\circ = $
यदि $A + B + C = \pi ,$ तो $\frac{{\cos A}}{{\sin B\sin C}} + \frac{{\cos B}}{{\sin C\sin A}} + \frac{{\cos C}}{{\sin A\sin B}} = $
$\left( {1 + \cos \frac{\pi }{8}} \right)\,\left( {1 + \cos \frac{{3\pi }}{8}} \right)\,\left( {1 + \cos \frac{{5\pi }}{8}} \right)\,\left( {1 + \cos \frac{{7\pi }}{8}} \right) = $
यदि $2\sec 2\alpha = \tan \beta + \cot \beta ,$ तब $\alpha + \beta $ का निम्न में से एक मान होगा
त्रिभुज $ABC$ में $\sin A + \sin B + \sin C$ का मान है