- Home
- Standard 11
- Mathematics
माना कि $\frac{\pi}{2} < x < \pi$ इस प्रकार है कि $\cot x=\frac{-5}{\sqrt{11}}$ है। तब
$\left(\sin \frac{11 x}{2}\right)(\sin 6 x-\cos 6 x)+\left(\cos \frac{11 x}{2}\right)(\sin 6 x+\cos 6 x)$ बराबर है
$\frac{\sqrt{11}-1}{2 \sqrt{3}}$
$\frac{\sqrt{11}+1}{2 \sqrt{3}}$
$\frac{\sqrt{11}+1}{3 \sqrt{2}}$
$\frac{\sqrt{11}-1}{3 \sqrt{2}}$
Solution
$x \in\left(\frac{\pi}{2}, \pi\right)$
$\left(\sin \frac{11 x}{2}\right)(\sin 6 x-\cos 6 x)+\left(\cos \frac{11 x}{2}\right)(\sin 6 x+\cos 6 x)$
$=\left\{\sin 6 x \sin \frac{11 x}{2}+\cos \frac{11 x}{2} \cos 6 x\right\}$
$=\cos \left(6 x-\frac{11 x}{2}\right)+\sin \left(6 x-\frac{11 x}{2}\right)$
$=\cos \frac{x}{2}+\sin \frac{x}{2}$
$=\frac{1}{2 \sqrt{3}}+\frac{\sqrt{11}}{2 \sqrt{3}}$
$=\frac{\sqrt{11}+1}{2 \sqrt{3}} \Rightarrow \text { Option (B) is correct. }$
$\cot x=-\frac{5}{\sqrt{11}}$
$\frac{1-\tan ^2 \frac{x}{2}}{2 \tan \frac{x}{2}}=-\frac{5}{\sqrt{11}}$
$\tan \frac{x}{2}=\sqrt{11},-\frac{1}{\sqrt{11}}$
$\tan \frac{x}{2}=\sqrt{11}$, As $\frac{\pi}{4}<\frac{x}{2}<\frac{\pi}{2}$