સાબિત કરો કે : $\cot 4 x(\sin 5 x+\sin 3 x)=\cot x(\sin 5 x-\sin 3 x)$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

$L.H.S$ $=\cot 4 x(\sin 5 x+\sin 3 x)$

$=\frac{\cot 4 x}{\sin 4 x}\left[2 \sin \left(\frac{5 x+3 x}{2}\right) \cos \left(\frac{5 x-3 x}{2}\right)\right]$

$\left[\because \sin A+\sin B=2 \sin \left(\frac{A+B}{2}\right) \cos \left(\frac{A-B}{2}\right)\right]$

$=\left(\frac{\cos 4 x}{\sin 4 x}\right)[2 \sin 4 x \cos x]$

$=2 \cos 4 x \cos x$

$R.H.S.$ $=\cot x(\sin 5 x-\sin 3 x)$

$=\frac{\cos x}{\sin x}\left[2 \cos \left(\frac{5 x+3 x}{2}\right) \sin \left(\frac{5 x-3 x}{2}\right)\right]$

$\left[\because \sin A-\sin B=2 \cos \left(\frac{A+B}{2}\right) \sin \left(\frac{A-B}{2}\right)\right]$

$=\frac{\cos x}{\sin x}[2 \cos 4 x \sin x]$

$=2 \cos 4 x \cdot \cos x$

$L.H.S.$ $=$ $R.H.S.$

Similar Questions

જો $\frac{\sqrt{2} \sin \alpha}{\sqrt{1+\cos 2 \alpha}}=\frac{1}{7}$ અને  $\sqrt{\frac{1-\cos 2 \beta}{2}}=\frac{1}{\sqrt{10}}$ $\alpha, \beta \in\left(0, \frac{\pi}{2}\right),$ તો  $\tan (\alpha+2 \beta)$ મેળવો.

  • [JEE MAIN 2020]

$\frac{1}{{\tan 3A - \tan A}} - \frac{1}{{\cot 3A - \cot A}} = $

સાબિત કરો કે : $\cot x \cot 2 x-\cot 2 x \cot 3 x-\cot 3 x \cot x=1$

$\sin \frac{\pi }{{14}}\sin \frac{{3\pi }}{{14}}\sin \frac{{5\pi }}{{14}}\sin \frac{{7\pi }}{{14}}\sin \frac{{9\pi }}{{14}}\sin \frac{{11\pi }}{{14}}\sin \frac{{13\pi }}{{14}}  = . . . .$

  • [IIT 1991]

સાબિત કરો કે : $\frac{\cos 9 x-\cos 5 x}{\sin 17 x-\sin 3 x}=-\frac{\sin 2 x}{\cos 10 x}$