यदि ${\rm{cosec}}\theta = \frac{{p + q}}{{p - q}},$  तब $\cot \,\left( {\frac{\pi }{4} + \frac{\theta }{2}} \right) = $

  • A

    $\sqrt {\frac{p}{q}} $

  • B

    $\sqrt {\frac{q}{p}} $

  • C

    $\sqrt {pq} $

  • D

    $pq$

Similar Questions

$\frac{{\sqrt 2 - \sin \alpha - \cos \alpha }}{{\sin \alpha - \cos \alpha }} = $

यदि $\sin A + \cos A = \sqrt 2 ,$ तो ${\cos ^2}A = $

$\cos 20^\circ \cos 40^\circ \cos 80^\circ = $

यदि $90^\circ  < A < 180^\circ $ तथा $\sin A = \frac{4}{5},$ तब $\tan \frac{A}{2}$ का मान होगा

निम्नलिखित को सिद्ध कीजिए

$\cos ^{2} 2 x-\cos ^{2} 6 x=\sin 4 x \sin 8 x$