જો $a{\sin ^2}x + b{\cos ^2}x = c,\,\,$$b\,{\sin ^2}y + a\,{\cos ^2}y = d$ અને $a\,\tan x = b\,\tan y,$ તો $\frac{{{a^2}}}{{{b^2}}}  = . . ..$

  • A

    $\frac{{(b - c)\,\,(d - b)}}{{(a - d)\,\,(c - a)}}$

  • B

    $\frac{{(a - d)\,\,(c - a)}}{{(b - c)\,\,(d - b)}}$

  • C

    $\frac{{(d - a)\,\,(c - a)}}{{(b - c)\,\,(d - b)}}$

  • D

    $\frac{{(b - c)\,\,(b - d)}}{{(a - c)\,\,(a - d)}}$

Similar Questions

જો $\theta $ એ લઘુકોણ છે અને $\sin \frac{\theta }{2} = \sqrt {\frac{{x - 1}}{{2x}}} $, તો $\tan \theta  = . . .$

$\frac{{\tan \,\,\left( {x\,\, - \,\,{\textstyle{\pi  \over 2}}} \right)\,\,.\,\,\cos \,\,\left( {{\textstyle{{3\pi } \over 2}}\,\, + \,\,x} \right)\,\, - \,\,{{\sin }^3}\,\left( {{\textstyle{{7\pi } \over 2}}\,\, - \,\,x} \right)}}{{\cos \,\,\left( {x\,\, - \,\,{\textstyle{\pi  \over 2}}} \right)\,\,.\,\,\tan \,\,\left( {{\textstyle{{3\pi } \over 2}}\,\, + \,\,x} \right)}}$  = 

સાબિત કરો કે : $\sin 2 x+2 \sin 4 x+\sin 6 x=4 \cos ^{2} x \sin 4 x$

સાબિત કરો કે, $\frac{\cos 7 x+\cos 5 x}{\sin 7 x-\sin 5 x}=\cot x$

${\sin ^2}\frac{\pi }{8} + {\sin ^2}\frac{{3\pi }}{8} + {\sin ^2}\frac{{5\pi }}{8} + {\sin ^2}\frac{{7\pi }}{8} = $