यदि $a{\sin ^2}x + b{\cos ^2}x = c,\,\,$$b\,{\sin ^2}y + a\,{\cos ^2}y = d$ तथा $a\,\tan x = b\,\tan y,$ तब $\frac{{{a^2}}}{{{b^2}}}$ बराबर है
$\frac{{(b - c)\,\,(d - b)}}{{(a - d)\,\,(c - a)}}$
$\frac{{(a - d)\,\,(c - a)}}{{(b - c)\,\,(d - b)}}$
$\frac{{(d - a)\,\,(c - a)}}{{(b - c)\,\,(d - b)}}$
$\frac{{(b - c)\,\,(b - d)}}{{(a - c)\,\,(a - d)}}$
$\sin 600^\circ \cos 330^\circ + \cos 120^\circ \sin 150^\circ $ का मान होगा
यदि $A + B + C = \pi ,$ तो ${\tan ^2}\frac{A}{2} + {\tan ^2}\frac{B}{2} + $${\tan ^2}\frac{C}{2}$ हमेशा है
$\frac{{\sqrt 2 - \sin \alpha - \cos \alpha }}{{\sin \alpha - \cos \alpha }} = $
$\frac{{\cos A}}{{1 - \sin A}} = $
माना कि $\frac{\pi}{2} < x < \pi$ इस प्रकार है कि $\cot x=\frac{-5}{\sqrt{11}}$ है। तब
$\left(\sin \frac{11 x}{2}\right)(\sin 6 x-\cos 6 x)+\left(\cos \frac{11 x}{2}\right)(\sin 6 x+\cos 6 x)$ बराबर है