If $\frac{x}{{\cos \theta }} = \frac{y}{{\cos \left( {\theta - \frac{{2\pi }}{3}} \right)}} = \frac{z}{{\cos \left( {\theta + \frac{{2\pi }}{3}} \right)}},$ then $x + y + z = $

  • A

    $1$

  • B

    $0$

  • C

    $ - 1$

  • D

    None of these

Similar Questions

$2\cos x - \cos 3x - \cos 5x = $

Prove that: $\frac{\sin 5 x+\sin 3 x}{\cos 5 x+\cos 3 x}=\tan 4 x$

The value of $cot\, x + cot\, (60^o  + x) + cot\, (120^o  + x)$ is equal to :

If $A$ lies in the third quadrant and $3\ tanA - 4 = 0$ , then find the value of $5\ sin\ 2A + 3\  sinA + 4\  cosA$

The value of ${\cos ^2}\,{10^o}\,\, - \,\cos \,\,{10^o}\,\cos \,\,{50^o}\, + \,{\cos ^2}\,{50^o}$ is

  • [JEE MAIN 2019]