If $\frac{x}{{\cos \theta }} = \frac{y}{{\cos \left( {\theta - \frac{{2\pi }}{3}} \right)}} = \frac{z}{{\cos \left( {\theta + \frac{{2\pi }}{3}} \right)}},$ then $x + y + z = $

  • A

    $1$

  • B

    $0$

  • C

    $ - 1$

  • D

    None of these

Similar Questions

If $a\,\cos 2\theta + b\,\sin 2\theta = c$  has $\alpha$ and $\beta$ as its solution, then the value of $\tan \alpha + \tan \beta $ is

The value of $\tan 81^{\circ}-\tan 63^{\circ}-\tan 27^{\circ}+\tan 9^{\circ}$ is

  • [KVPY 2012]

$\tan {3^o} + 2\tan {6^o} + 4\tan {12^o} + 8\cot {24^o} = \cot {\theta ^o}$ then

$\sqrt 2 + \sqrt 3 + \sqrt 4 + \sqrt 6 $ is equal to

  • [IIT 1966]

Prove that $\frac{\cos 7 x+\cos 5 x}{\sin 7 x-\sin 5 x}=\cot x$