यदि $\frac{x}{{\cos \theta }} = \frac{y}{{\cos \left( {\theta - \frac{{2\pi }}{3}} \right)}} = \frac{z}{{\cos \left( {\theta + \frac{{2\pi }}{3}} \right)}},$ तो $x + y + z = $

  • A

    $1$

  • B

    $0$

  • C

    $ - 1$

  • D

    इनमें से कोई नहीं

Similar Questions

यदि $\theta $ न्यून कोण है तथा $\sin \frac{\theta }{2} = \sqrt {\frac{{x - 1}}{{2x}}} $, तो $\tan \theta $ का मान है

$3\,\left[ {{{\sin }^4}\,\left( {\frac{{3\pi }}{2} - \alpha } \right) + {{\sin }^4}\,(3\pi + \alpha )} \right]$ $ - 2\,\left[ {{{\sin }^6}\,\left( {\frac{\pi }{2} + \alpha } \right) + {{\sin }^6}(5\pi - \alpha )} \right] = $

  • [IIT 1986]

यदि $\tan \theta = t,$ तो $\tan 2\theta + \sec 2\theta = $

यदि $\sin A + \cos A = \sqrt 2 ,$ तो ${\cos ^2}A = $

$\cos A + \cos (240^\circ + A) + \cos (240^\circ - A) = $