If $\sin 6\theta = 32{\cos ^5}\theta \sin \theta - 32{\cos ^3}\theta \sin \theta + 3x,$ then $x = $

  • A

    $\cos \theta $

  • B

    $\cos 2\theta $

  • C

    $\sin \theta $

  • D

    $\sin 2\theta $

Similar Questions

$\frac{{\cos A}}{{1 - \sin A}} = $

$\sqrt {\frac{{1 - \sin A}}{{1 + \sin A}}} = $

If $A + B + C = \pi ,$ then ${\tan ^2}\frac{A}{2} + {\tan ^2}\frac{B}{2} + $${\tan ^2}\frac{C}{2}$ is always

The exact value of $cos^273^o  + cos^247^o  + (cos73^o  . cos47^o )$ is

${\rm{cosec }}A - 2\cot 2A\cos A = $