If $\sin 6\theta = 32{\cos ^5}\theta \sin \theta - 32{\cos ^3}\theta \sin \theta + 3x,$ then $x = $
$\cos \theta $
$\cos 2\theta $
$\sin \theta $
$\sin 2\theta $
If $A$ and $B$ are complimentary angles, then :
If $A, B, C$ are acute positive angles such that $A + B + C = \pi $ and $\cot A\,\cot \,B\,\cot \,C = K,$ then
If $\tan A = \frac{1}{2},\tan B = \frac{1}{3},$ then $\cos 2A = $
$\tan 20^\circ \tan 40^\circ \tan 60^\circ \tan 80^\circ = $
The value of $cosec \frac{\pi }{{18}} - \sqrt 3 \,sec\, \frac{\pi }{{18}}$ is a