3.Trigonometrical Ratios, Functions and Identities
medium

If $\sin 6\theta = 32{\cos ^5}\theta \sin \theta - 32{\cos ^3}\theta \sin \theta + 3x,$ then $x = $

A

$\cos \theta $

B

$\cos 2\theta $

C

$\sin \theta $

D

$\sin 2\theta $

Solution

(d) $\sin 6\theta = 2\sin 3\theta \cos 3\theta $

$ = 2\,[3\sin \theta – 4{\sin ^3}\theta ]\,[4{\cos ^3}\theta – 3\cos \theta ]$ 

$=24 \sin \theta \cos \theta (\sin ^2 \theta + \cos ^2 \theta) -18\sin \theta \cos \theta  -32 \sin ^2 \theta \cos^2 \theta$

$ = 32{\cos ^5}\theta \sin \theta – 32{\cos ^3}\theta \sin \theta + 3\sin 2\theta $ 

On comparing, $x = \sin 2\theta .$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.