3.Trigonometrical Ratios, Functions and Identities
normal

If $\sin \left( {x + \frac{{4\pi }}{9}} \right) = a;\,$ $\frac{\pi }{9}\, < \,x\, < \,\frac{\pi }{3},$ then $\cos \left( {x + \frac{{7\pi }}{9}} \right)$ equals :-

A

$\frac{{\sqrt {(1 - {a^2})}  - a\sqrt 3 }}{2}$

B

$\frac{{1 - {a^2} + a\sqrt 3 }}{2}$

C

$\frac{{a\sqrt 3  - \sqrt {(1 - {a^2})} }}{2}$

D

$\frac{{ - \sqrt {(1 - {a^2})}  - a\sqrt 3 }}{2}$

Solution

Given that $\sin \left(x+80^{\circ}\right)=a$

$\therefore \cos \left(x+140^{\circ}\right)=\cos \left\{\left(x+80^{\circ}\right)+60^{\circ}\right\}$

${=\cos \left(x+80^{\circ}\right) \cos 60^{\circ}-\sin \left(x+80^{\circ}\right) \sin 60^{\circ}} $

${=-\sqrt{\left(1-a^{2}\right)} \cdot \frac{1}{2}-\frac{a \sqrt{3}}{2}=\frac{-\sqrt{\left(1-a^{2}\right)}-\sqrt{3} a}{2}}$

$\left(\therefore 20^{\circ}<\mathrm{x}<60^{\circ}, \cos \left(\mathrm{x}+80^{\circ}\right)\right.is -ve)$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.