If $\sin \left( {x + \frac{{4\pi }}{9}} \right) = a;\,$ $\frac{\pi }{9}\, < \,x\, < \,\frac{\pi }{3},$ then $\cos \left( {x + \frac{{7\pi }}{9}} \right)$ equals :-
$\frac{{\sqrt {(1 - {a^2})} - a\sqrt 3 }}{2}$
$\frac{{1 - {a^2} + a\sqrt 3 }}{2}$
$\frac{{a\sqrt 3 - \sqrt {(1 - {a^2})} }}{2}$
$\frac{{ - \sqrt {(1 - {a^2})} - a\sqrt 3 }}{2}$
If $\tan \frac{\theta }{2} = t,$then $\frac{{1 - {t^2}}}{{1 + {t^2}}}$is equal to
$\tan 5x\tan 3x\tan 2x = $
If $\alpha + \beta - \gamma = \pi ,$ then ${\sin ^2}\alpha + {\sin ^2}\beta - {\sin ^2}\gamma = $
The value of $\cot {70^o} + 4\cos {70^o}$ is
In any triangle $ABC ,$ ${\sin ^2}\frac{A}{2} + {\sin ^2}\frac{B}{2} + {\sin ^2}\frac{C}{2}$ is equal to