यदि $\sin 6\theta = 32{\cos ^5}\theta \sin \theta - 32{\cos ^3}\theta \sin \theta + 3x,$ तब $x = $
$\cos \theta $
$\cos 2\theta $
$\sin \theta $
$\sin 2\theta $
यदि $\cos x + \cos y + \cos \alpha = 0$ तथा $\sin x + \sin y + \sin \alpha = 0,$ तब $\cot \,\left( {\frac{{x + y}}{2}} \right) = $
यदि $\tan \beta = \cos \theta \tan \alpha ,$ तब ${\tan ^2}\frac{\theta }{2} = $
$\frac{{\sin 3\theta - \cos 3\theta }}{{\sin \theta + \cos \theta }} + 1 = $
यदि $\tan x = \frac{b}{a},$ तो $\sqrt {\frac{{a + b}}{{a - b}}} + \sqrt {\frac{{a - b}}{{a + b}}} = $
यदि $0 < x, y < \pi$ तथा $\cos x+\cos y-\cos (x+y)=\frac{3}{2}$, है, तो $\sin x+\cos y$ बराबर है