यदि $\sqrt 3 \tan 2\theta + \sqrt 3 \tan 3\theta + \tan 2\theta \tan 3\theta = 1$, तो $\theta $ का व्यापक मान है
$n\pi + \frac{\pi }{5}$
$\left( {n + \frac{1}{6}} \right)\frac{\pi }{5}$
$\left( {2n \pm \frac{1}{6}} \right)\frac{\pi }{5}$
$\left( {n + \frac{1}{3}} \right)\frac{\pi }{5}$
समीकरण $1+\sin ^{4} x =\cos ^{2} 3 x , x \in\left[-\frac{5 \pi}{2}, \frac{5 \pi}{2}\right]$ के हलों की संख्या हैं
यदि $\tan 2\theta \tan \theta = 1$, तो $\theta $ का व्यापक मान है
यदि $\tan (\pi \cos \theta ) = \cot (\pi \sin \theta )$, तब $\sin \left( {\theta + \frac{\pi }{4}} \right)$ का मान होगा
यदि $\cos \theta + \cos 2\theta + \cos 3\theta = 0$, तब $\theta $ का व्यापक मान होगा
समीकरण, $\sin ^{7} x +\cos ^{7} x =1$ के $x \in[0,4 \pi]$ में हलों की संख्या है -