Trigonometrical Equations
medium

यदि $\sqrt 3 \tan 2\theta  + \sqrt 3 \tan 3\theta  + \tan 2\theta \tan 3\theta  = 1$, तो $\theta $ का व्यापक मान है

A

$n\pi + \frac{\pi }{5}$

B

$\left( {n + \frac{1}{6}} \right)\frac{\pi }{5}$

C

$\left( {2n \pm \frac{1}{6}} \right)\frac{\pi }{5}$

D

$\left( {n + \frac{1}{3}} \right)\frac{\pi }{5}$

Solution

(b) $\sqrt 3 \tan 2\theta + \sqrt 3 \tan 3\theta + \tan 2\theta \tan 3\theta = 1$

$ \Rightarrow $ $\frac{{\tan 2\theta + \tan 3\theta }}{{1 – \tan 2\theta \tan 3\theta }} = \frac{1}{{\sqrt 3 }}$ 

==> $\tan 5\theta = \tan \frac{\pi }{6}$

$ \Rightarrow $ $5\theta = n\pi + \frac{\pi }{6} $

$\Rightarrow \theta = \left( {n + \frac{1}{6}} \right)\frac{\pi }{5}$.

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.