If $\sqrt 3 \tan 2\theta + \sqrt 3 \tan 3\theta + \tan 2\theta \tan 3\theta = 1$, then the general value of $\theta $ is
$n\pi + \frac{\pi }{5}$
$\left( {n + \frac{1}{6}} \right)\frac{\pi }{5}$
$\left( {2n \pm \frac{1}{6}} \right)\frac{\pi }{5}$
$\left( {n + \frac{1}{3}} \right)\frac{\pi }{5}$
If $\tan \theta + \tan 2\theta + \sqrt 3 \tan \theta \tan 2\theta = \sqrt 3 ,$ then
If $2{\sin ^2}\theta = 3\cos \theta ,$ where $0 \le \theta \le 2\pi $, then $\theta = $
If $2\sin \theta + \tan \theta = 0$, then the general values of $\theta $ are
Let $S=\{x \in R: \cos (x)+\cos (\sqrt{2} x)<2\}$, then
If $K = sin^6x + cos^6x$, then $K$ belongs to the interval