If $\sqrt 3 \tan 2\theta + \sqrt 3 \tan 3\theta + \tan 2\theta \tan 3\theta = 1$, then the general value of $\theta $ is

  • A

    $n\pi + \frac{\pi }{5}$

  • B

    $\left( {n + \frac{1}{6}} \right)\frac{\pi }{5}$

  • C

    $\left( {2n \pm \frac{1}{6}} \right)\frac{\pi }{5}$

  • D

    $\left( {n + \frac{1}{3}} \right)\frac{\pi }{5}$

Similar Questions

General solution of $eq^n\, 2tan\theta \, -\, cot\theta  =\, -1$ is

Number of solutions of the equation $2^x + x = 2^{sin \ x} +  \sin x$ in $[0,10\pi ]$ is -

If $\sqrt{3}\left(\cos ^{2} x\right)=(\sqrt{3}-1) \cos x+1,$ the number of solutions of the given equation when $x \in\left[0, \frac{\pi}{2}\right]$ is

  • [JEE MAIN 2021]

Prove that

$\cos 2 x \cos \frac{x}{2}-\cos 3 x \cos \frac{9 x}{2}=\sin 5 x \sin \frac{5 x}{2}$

The number of integral value $(s)$ of $'p'$ for which the equation $99\cos 2\theta  - 20\sin 2\theta  = 20p + 35$ , will have a solution is