If $\cot \theta + \tan \theta = 2{\rm{cosec}}\theta $, the general value of $\theta $ is
$n\pi \pm \frac{\pi }{3}$
$n\pi \pm \frac{\pi }{6}$
$2n\pi \pm \frac{\pi }{3}$
$2n\pi \pm \frac{\pi }{6}$
The positive integer value of $n>3$ satisfying the equation $\frac{1}{\sin \left(\frac{\pi}{n}\right)}=\frac{1}{\sin \left(\frac{2 \pi}{n}\right)}+\frac{1}{\sin \left(\frac{3 \pi}{n}\right)}$ is
Find the value of $\tan \frac{\pi}{8}$
Let $S=\left\{\theta \in(0,2 \pi): 7 \cos ^{2} \theta-3 \sin ^{2} \theta-2\right.$ $\left.\cos ^{2} 2 \theta=2\right\}$. Then, the sum of roots of all the equations $x ^{2}-2\left(\tan ^{2} \theta+\cot ^{2} \theta\right) x +6 \sin ^{2} \theta=0$ $\theta \in S$, is$...$
The only value of $x$ for which ${2^{\sin x}} + {2^{\cos x}} > {2^{1 - (1/\sqrt 2 )}}$ holds, is
The number of points in $(-\infty, \infty)$, for which $x^2-x \sin x-\cos x=0$, is