If $\cos 2\theta + 3\cos \theta = 0$, then the general value of $\theta $ is

  • A

    $2n\pi \pm {\cos ^{ - 1}}\frac{{ - 3 + \sqrt {17} }}{4}$

  • B

    $2n\pi \pm {\cos ^{ - 1}}\frac{{ - 3 - \sqrt {17} }}{4}$

  • C

    $n\pi \pm {\cos ^{ - 1}}\frac{{ - 3 + \sqrt {17} }}{4}$

  • D

    $n\pi \pm {\cos ^{ - 1}}\frac{{ - 3 - \sqrt {17} }}{4}$

Similar Questions

Number of solutions of $\sqrt {\tan \theta }  = 2\sin \theta ,\theta  \in \left[ {0,2\pi } \right]$ is equal to 

Let $S=\{x \in R: \cos (x)+\cos (\sqrt{2} x)<2\}$, then

  • [KVPY 2018]

If both roots of quadratic equation ${x^2} + \left( {\sin \,\theta  + \cos \,\theta } \right)x + \frac{3}{8} = 0$ are positive and distinct then complete set of values of $\theta $ in $\left[ {0,2\pi } \right]$ is 

$sin^{2n}x + cos^{2n}x$ lies between

If ${\tan ^2}\theta - (1 + \sqrt 3 )\tan \theta + \sqrt 3 = 0$, then the general value of $\theta $ is