If $\cos 2\theta + 3\cos \theta = 0$, then the general value of $\theta $ is
$2n\pi \pm {\cos ^{ - 1}}\frac{{ - 3 + \sqrt {17} }}{4}$
$2n\pi \pm {\cos ^{ - 1}}\frac{{ - 3 - \sqrt {17} }}{4}$
$n\pi \pm {\cos ^{ - 1}}\frac{{ - 3 + \sqrt {17} }}{4}$
$n\pi \pm {\cos ^{ - 1}}\frac{{ - 3 - \sqrt {17} }}{4}$
Number of principal solution of the equation $tan \,3x - tan \,2x - tan\, x = 0$, is
The sum of the solutions in $x \in (0,4\pi )$ of the equation $4\sin \frac{x}{3}\left( {\sin \left( {\frac{{\pi + x}}{3}} \right)} \right)\sin \left( {\frac{{2\pi + x}}{3}} \right) = 1$ is
If the solution of the equation $\log _{\cos x} \cot x+4 \log _{\sin x} \tan x=1, x \in\left(0, \frac{\pi}{2}\right), \quad$ is $\sin ^{-1}\left(\frac{\alpha+\sqrt{\beta}}{2}\right)$, where $\alpha, \beta$ are integers, then $\alpha+\beta$ is equal to:
Number of solution $(s)$ of equation $cosec\, \theta -cot \,\theta = 1$ in $[0,2 \pi]$ is-
If $1\,\, + \,\,\sin \theta \,\, + \,\,{\sin ^2}\theta + \ldots .\,\,to\,\,\infty \,\, = \,\,4\, + 2\sqrt 3 ,\,\,0\,\, < \,\theta \,\,\pi ,\,\,\theta \,\, \ne \,\frac{\pi }{2}\,,$ then $\theta = $