If $\cos 2\theta + 3\cos \theta = 0$, then the general value of $\theta $ is
$2n\pi \pm {\cos ^{ - 1}}\frac{{ - 3 + \sqrt {17} }}{4}$
$2n\pi \pm {\cos ^{ - 1}}\frac{{ - 3 - \sqrt {17} }}{4}$
$n\pi \pm {\cos ^{ - 1}}\frac{{ - 3 + \sqrt {17} }}{4}$
$n\pi \pm {\cos ^{ - 1}}\frac{{ - 3 - \sqrt {17} }}{4}$
Number of solutions of $\sqrt {\tan \theta } = 2\sin \theta ,\theta \in \left[ {0,2\pi } \right]$ is equal to
Let $S=\{x \in R: \cos (x)+\cos (\sqrt{2} x)<2\}$, then
If both roots of quadratic equation ${x^2} + \left( {\sin \,\theta + \cos \,\theta } \right)x + \frac{3}{8} = 0$ are positive and distinct then complete set of values of $\theta $ in $\left[ {0,2\pi } \right]$ is
$sin^{2n}x + cos^{2n}x$ lies between
If ${\tan ^2}\theta - (1 + \sqrt 3 )\tan \theta + \sqrt 3 = 0$, then the general value of $\theta $ is