The number of values of $x$ in the interval $[0, 5 \pi  ] $ satisfying the equation $3{\sin ^2}x - 7\sin x + 2 = 0$ is

  • [IIT 1998]
  • A

    $0$

  • B

    $5$

  • C

    $6$

  • D

    $10$

Similar Questions

The number of distinct solutions of the equation $\frac{5}{4} \cos ^2 2 x+\cos ^4 x+\sin ^4 x+\cos ^6 x+\sin ^6 x=2$ in the interval $[0,2 \pi]$ is

  • [IIT 2015]

If the solution of the equation $\log _{\cos x} \cot x+4 \log _{\sin x} \tan x=1, x \in\left(0, \frac{\pi}{2}\right), \quad$ is $\sin ^{-1}\left(\frac{\alpha+\sqrt{\beta}}{2}\right)$, where $\alpha, \beta$ are integers, then $\alpha+\beta$ is equal to:

  • [JEE MAIN 2023]

The solution of the equation $cos^2\theta\, +\, sin\theta\, + 1\, =\, 0$ lies in the interval

If $A + B + C = \pi$ & $sin\, \left( {A\,\, + \,\,\frac{C}{2}} \right) = k \,sin,\frac{C}{2}$ then $tan\, \frac{A}{2} \,tan \, \frac{B}{2}=$

Values of $\theta (0 < \theta < {360^o})$ satisfying ${\rm{cosec}}\theta + 2 = 0$ are