The number of values of $x$ in the interval $[0, 5 \pi  ] $ satisfying the equation $3{\sin ^2}x - 7\sin x + 2 = 0$ is

  • [IIT 1998]
  • A

    $0$

  • B

    $5$

  • C

    $6$

  • D

    $10$

Similar Questions

The equation ${\sin ^4}x + {\cos ^4}x + \sin 2x + \alpha = 0$ is solvable for

Number of values of $x$ satisfying $2sin^22x = 2cos^28x + cos10x$ in $x  \in \left[ { - \frac{\pi }{4},\frac{\pi }{4}} \right]$ is-
 

If $x = \frac{{n\pi }}{2}$ , satisfies the equation $sin\, \frac{x}{2}- cos \frac{x}{2} = 1$ $- sin\, x$ & the inequality $\left| {\frac{x}{2}\,\, - \,\,\frac{\pi }{2}} \right|\,\, \le \,\,\frac{{3\pi }}{4}$, then:

If $\sqrt 3 \cos \,\theta + \sin \theta = \sqrt 2 ,$ then the most general value of $\theta $ is

For $0<\theta<\frac{\pi}{2}$, the solution(s) of $\sum_{m=1}^6 \operatorname{cosec}\left(\theta+\frac{(m-1) \pi}{4}\right) \operatorname{cosec}\left(\theta+\frac{m \pi}{4}\right)=4 \sqrt{2}$ is(are)

$(A)$ $\frac{\pi}{4}$ $(B)$ $\frac{\pi}{6}$ $(C)$ $\frac{\pi}{12}$ $(D)$ $\frac{5 \pi}{12}$

  • [IIT 2009]