If $\sin 3\alpha = 4\sin \alpha \sin (x + \alpha )\sin (x - \alpha ),$ then $x = $

  • A

    $n\pi \pm \frac{\pi }{6}$

  • B

    $n\pi \pm \frac{\pi }{3}$

  • C

    $n\pi \pm \frac{\pi }{4}$

  • D

    $n\pi \pm \frac{\pi }{2}$

Similar Questions

The number of solutions of the equation $32^{\tan ^{2} x}+32^{\sec ^{2} x}=81,0 \leq x \leq \frac{\pi}{4}$ is :

  • [JEE MAIN 2021]

$2{\sin ^2}x + {\sin ^2}2x = 2,\, - \pi < x < \pi ,$ then $x = $

If the equation $tan^4x -2sec^2x + [a]^2 = 0$ has atleast one solution, then the complete range of $'a'$ (where $a \in R$ ) is 
(Note : $[k]$ denotes greatest integer less than or equal to $k$ )

The number of solutions of the equation $sin\, 2x - 2\,cos\,x+ 4\,sin\, x\, = 4$ in the interval $[0, 5\pi ]$ is

  • [JEE MAIN 2013]

Find the general solution of the equation $\cos 4 x=\cos 2 x$