- Home
- Standard 11
- Mathematics
Trigonometrical Equations
normal
The number of distinct solutions of the equation $\frac{5}{4} \cos ^2 2 x+\cos ^4 x+\sin ^4 x+\cos ^6 x+\sin ^6 x=2$ in the interval $[0,2 \pi]$ is
A
$5$
B
$6$
C
$7$
D
$8$
(IIT-2015)
Solution
$\frac{5}{4} \cos ^2 2 x+\cos ^4 x+\sin ^4 x+\cos ^6 x+\sin ^6 x=2$
$\Rightarrow \frac{5}{4} \cos ^2 2 x-5 \cos ^2 x \sin ^2 x=0$
$\Rightarrow \tan ^2 2 x=1, \text { where } 2 x \in[0,4 \pi]$
$\text { Number of solutions }=8$
Standard 11
Mathematics