- Home
- Standard 11
- Mathematics
The smallest positive values of $x$ and $y$ which satisfy $\tan (x - y) = 1,\,$ $\sec (x + y) = \frac{2}{{\sqrt 3 }}$ are
$x = \frac{{25\pi }}{{24}},\,y = \frac{{19\pi }}{{24}}$
$x = \frac{{37\pi }}{{24}},\,y = \frac{{7\pi }}{{24}}$
$x = \frac{\pi }{4},\,y = \frac{\pi }{2}$
$a$ or $b$ both
Solution
(d) $\tan (x – y) = 1$$ \Rightarrow $ $x – y = \frac{\pi }{4},\,\frac{{5\pi }}{4}$
(Considering values which lie between $0$ and $2\pi $)
$\sec (x + y) = \frac{2}{{\sqrt 3 }}$ $ \Rightarrow $ $x + y = \frac{\pi }{6},\,\frac{{11\pi }}{6}$
(Consider values which lie between $0$ and $2\pi $)
Since $x,\,y$ are positive, therefore $x + y > x – y$
Thus we have $x + y = \frac{{11\pi }}{6}$ and $x – y = \frac{\pi }{4}$
or $x + y = \frac{{11\pi }}{6}$ and $x – y = \frac{{5\pi }}{4}$
Solving these two systems of equations, we get
$x = \frac{{25\pi }}{{24}}$ and $y = \frac{{19\pi }}{{24}}$ or $x = \frac{{37\pi }}{{24}}$ and $y = \frac{{7\pi }}{{24}}$.