यदि $\left| {\,\begin{array}{*{20}{c}}{\cos (A + B)}&{ - \sin (A + B)}&{\cos 2B}\\{\sin A}&{\cos A}&{\sin B}\\{ - \cos A}&{\sin A}&{\cos B}\end{array}\,} \right| = 0$, तब $B =$
$(2n + 1)\frac{\pi }{2}$
$n\pi $
$(2n + 1)\frac{\pi }{2}$
$2n\pi $
यदि $\tan \theta - \sqrt 2 \sec \theta = \sqrt 3 $, तो $\theta $ का व्यापक मान है
त्रिकोणमितीय समीकरण $\tan \theta = \cot \alpha $ का व्यापक हल है
माना $f:[0,2] \rightarrow R$ एक फलन है जो
$f(x)=(3-\sin (2 \pi x)) \sin \left(\pi x-\frac{\pi}{4}\right)-\sin \left(3 \pi x+\frac{\pi}{4}\right)$
द्वारा परिभाषित है। यदि $\alpha, \beta \in[0,2]$ इस प्रकार है कि $\{ x \in[0,2]: f( x ) \geq 0\}=[\alpha, \beta]$ हो, तो $\beta-\alpha$ का मान होगा
समीकरण $\sin x + \cos x = 2$ के हल होंगे
यदि $\cos \alpha+\cos \beta=\frac{3}{2}$ तथा $\sin \alpha+\sin \beta=\frac{1}{2}$ हैं, तथा $\alpha$ तथा $\beta$ का समांतर माध्य $\theta$ है, तो $\sin 2 \theta+\cos 2 \theta$ बराबर है