જો $1 + \sin x + {\sin ^2}x + .....$ થી $\infty = 4 + 2\sqrt 3 ,\,0 < x < \pi ,$ તો . . .
$x = \frac{\pi }{6}$
$x = \frac{\pi }{3}$
$x = \frac{\pi }{3}$ અથવા $\frac{\pi }{6}$
$x = \frac{\pi }{3}$ અથવા $\frac{{2\pi }}{3}$
જો $m$ અને $n$ એ સમીકરણ $\cos 2 \theta \cos \frac{\theta}{2}=\cos 3 \theta \cos \frac{9 \theta}{2}$ નું સમાધાન કરતી અંતરાલ $[-\pi, \pi]$ માં ની $\theta$ ની અનુક્રમે ધન અને ઋણ કિંમતો હોય, તો $m n=...........$
જો સમીકરણ $\cos p\theta + \cos q\theta = 0,\;p > 0,\;q > 0$ ની $\theta $ ના ઉકેલગણ સમાંતર શ્રેણીમાં હોય તો સમાંતર શ્રેણીનો ન્યુનતમ સમાન્ય તફાવત મેળવો.
$'p'$ ની પૂર્ણાક કિમતોની સંખ્યા કેટલી મળે કે જેથી સમીકરણ $99\cos 2\theta - 20\sin 2\theta = 20p + 35$ નો ઉકેલ શક્ય થાય
$\tan 2 x=-\cot \left(x+\frac{\pi}{3}\right)$ ઉકેલો.
અહી $S={\theta \in\left(0, \frac{\pi}{2}\right): \sum_{m=1}^{9}}$
$\sec \left(\theta+(m-1) \frac{\pi}{6}\right) \sec \left(\theta+\frac{m \pi}{6}\right)=-\frac{8}{\sqrt{3}}$ હોય તો . . .