Trigonometrical Equations
hard

यदि $5\cos 2\theta  + 2{\cos ^2}\frac{\theta }{2} + 1 = 0, - \pi  < \theta  < \pi $, तब $\theta  = $

A

$\frac{\pi }{3}$

B

$\frac{\pi }{3},{\cos ^{ - 1}}\frac{3}{5}$

C

${\cos ^{ - 1}}\frac{3}{5}$

D

$\frac{\pi }{3},\pi - {\cos ^{ - 1}}\frac{3}{5}$

Solution

$5\cos 2\theta  + 2{\cos ^2}\frac{\theta }{2} + 1 = 0$

$ \Rightarrow $  $5(2{\cos ^2}\theta  – 1) + (1 + \cos \theta ) + 1 = 0$

$ \Rightarrow $   $10{\cos ^2}\theta  + \cos \theta  – 3 = 0$

$ \Rightarrow $   $(5\cos \theta  + 3)\,(2\cos \theta  – 1) = 0$

$ \Rightarrow $  $\cos \theta  = \frac{1}{2},\,\cos \theta  =  – \frac{3}{5}$

$\Rightarrow \theta  = \frac{\pi }{3},\,\pi  – {\cos ^{ – 1}}\left( {\frac{3}{5}} \right)$.

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.