$\tan (x - y) = 1,\,$ $\sec (x + y) = \frac{2}{{\sqrt 3 }}$ को सन्तुष्ट करने वाले $x$ तथा $y$ के धनात्मक मान हैं
$x = \frac{{25\pi }}{{24}},\,y = \frac{{19\pi }}{{24}}$
$x = \frac{{37\pi }}{{24}},\,y = \frac{{7\pi }}{{24}}$
$x = \frac{\pi }{4},\,y = \frac{\pi }{2}$
$a$ ओर $b$ दोनो
$(-\infty, \infty)$ में बिन्दुओं की संख्या, जिनके लिए $x^2-x \sin x-\cos x=0$, है-
समीकरण $\left| {\,\begin{array}{*{20}{c}}{\cos \theta }&{\sin \theta }&{\cos \theta }\\{ - \sin \theta }&{\cos \theta }&{\sin \theta }\\{ - \cos \theta }&{ - \sin \theta }&{\cos \theta }\end{array}\,} \right| = 0$ का व्यापक हल होगा
$3\tan (A - {15^o}) = \tan (A + {15^o})$ का हल है
समुच्चय $S=\left\{\theta \epsilon[-4 \pi, 4 \pi]: 3 \cos ^2 2 \theta+\right.$ $6 \cos 2 \theta-10 \cos ^2 \theta+5=0$ में अवयवों की संख्या है $........$
समीकरण $\sec \theta - {\rm{cosec}}\theta = \frac{4}{3}$ का व्यापक हल है