यदि $(2\cos x - 1)(3 + 2\cos x) = 0,\,0 \le x \le 2\pi $, तो $x = $
$\frac{\pi }{3}$
$\frac{\pi }{3},\frac{{5\pi }}{3}$
$\frac{\pi }{2},\frac{{5\pi }}{3},{\cos ^{ - 1}}\left( { - \frac{3}{2}} \right)$
$\frac{{5\pi }}{3}$
समीकरण $\quad \sqrt{3}\left(\cos ^{2} x\right)=(\sqrt{3}-1) \cos x+1$, जबकि $x \in\left[0, \frac{\pi}{2}\right]$, के हलों की संख्या है ....... |
$\lambda$ के सभी मानों जिनके लिए समीकरण $\cos ^2 2 x-2 \sin ^4 x-2 \cos ^2 x=\lambda$ का एक वास्तविक हल $x$ है का समुच्चय है :-
$[0,2 \pi]$ में $x$ के सभी मानों, जिनके लिए $\sin x +\sin 2 x +\sin 3 x +\sin 4 x =0$ है, का योग है
यदि $\tan 2\theta \tan \theta = 1$, तो $\theta $ का व्यापक मान है
$[2,3]$ अंतराल में समीकरण $\sin \left(x+x^2\right)-\sin \left(x^2\right)=\sin x$ के कितने हल $x$ संभव हैं :