The number of solutions of $|\cos x|=\sin x$, such that $-4 \pi \leq x \leq 4 \pi$ is.
$4$
$6$
$8$
$12$
$2$ solutions in $(0,2 \pi)$
So, $8$ solutions in $[-4 \pi, 4 \pi]$
If ${\sin ^2}\theta – 2\cos \theta + \frac{1}{4} = 0,$ then the general value of $\theta $ is
If $sin\, \theta = sin\, \alpha$ then $sin\, \frac{\theta }{3}$ =
General value of $\theta $ satisfying the equation ${\tan ^2}\theta + \sec 2\theta – = 1$ is
If $\tan m\theta = \tan n\theta $, then the general value of $\theta $ will be in
If$\cos 6\theta + \cos 4\theta + \cos 2\theta + 1 = 0$, where $0 < \theta < {180^o}$, then $\theta =$
Confusing about what to choose? Our team will schedule a demo shortly.