If $\cos 2\theta = (\sqrt 2 + 1)\,\,\left( {\cos \theta - \frac{1}{{\sqrt 2 }}} \right)$, then the value of $\theta $ is
$2n\pi + \frac{\pi }{4}$
$2n\pi \pm \frac{\pi }{4}$
$2n\pi - \frac{\pi }{4}$
None of these
If the equation $2tan\ x \ sin\ x -2 tan\ x + cos\ x = 0$ has $k$ solutions in $[0,k \pi]$, then number of integral values of $k$ is-
The sum of solutions of the equation $\frac{\cos \mathrm{x}}{1+\sin \mathrm{x}}=|\tan 2 \mathrm{x}|, \mathrm{x} \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)-\left\{\frac{\pi}{4},-\frac{\pi}{4}\right\}$ is :
If ${\tan ^2}\theta - (1 + \sqrt 3 )\tan \theta + \sqrt 3 = 0$, then the general value of $\theta $ is
If the solution for $\theta $ of $\cos p\theta + \cos q\theta = 0,\;p > 0,\;q > 0$ are in $A.P.$, then the numerically smallest common difference of $A.P.$ is
If $\cos \theta = - \frac{1}{{\sqrt 2 }}$ and $\tan \theta = 1$, then the general value of $\theta $ is