Trigonometrical Equations
hard

અંતરાલ $[0,2 \pi]$ માં $x$ ની બધીજ કિમંતોનો સરવાળો કરો કે જેથી $\sin x+\sin 2 x+\sin 3 x+\sin 4 x=0$ થાય.

A

$11 \pi$

B

$12 \pi$

C

$8 \pi$

D

$9 \pi$

(JEE MAIN-2021)

Solution

$(\sin x+\sin 4 x)+(\sin 2 x+\sin 3 x)=0$

$\Rightarrow 2 \sin \frac{5 x}{2}\left\{\cos \frac{3 x}{2}+\cos \frac{x}{2}\right\}=0$

$\Rightarrow 2 \sin \frac{5 x}{2}\left\{2 \cos x \cos \frac{x}{2}\right\}=0$

$2 \sin \frac{5 x}{2}=0 \Rightarrow \frac{5 x}{2}=0, p, 2 \pi, 3 \pi, 4 \pi, 5 \pi$

$\Rightarrow x=0, \frac{2 \pi}{5}, \frac{4 \pi}{5}, \frac{6 \pi}{5}, \frac{8 \pi}{5}, 2 \pi$

$\cos \frac{x}{2}=0 \Rightarrow \frac{x}{2}=\frac{x}{2} \Rightarrow x=\pi$

$\cos x=0 \Rightarrow x=\frac{\pi}{2}, \frac{3 \pi}{2}$

So cum $=6 \pi+\pi+2 \pi=9 \pi$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.