If ${c^2} > {a^2}(1 + {m^2}),$ then the line $y = mx + c$ will intersect the circle ${x^2} + {y^2} = {a^2}$

  • A

    At one point

  • B

    At two distinct points

  • C

    At no point

  • D

    None of these

Similar Questions

The straight line $x + 2y = 1$ meets the coordinate axes at $A$ and $B$. A circle is drawn through $A, B$ and the origin. Then the sum of perpendicular distances from $A$ and $B$ on the tangent to the circle at the origin is

  • [JEE MAIN 2019]

$x = 7$ touches the circle ${x^2} + {y^2} - 4x - 6y - 12 = 0$, then the coordinates of the point of contact are

If $a > 2b > 0$ then the positive value of m for which $y = mx - b\sqrt {1 + {m^2}} $ is a common tangent to ${x^2} + {y^2} = {b^2}$ and ${(x - a)^2} + {y^2} = {b^2}$, is

  • [IIT 2002]

The co-ordinates of the point from where the tangents are drawn to the circles ${x^2} + {y^2} = 1$, ${x^2} + {y^2} + 8x + 15 = 0$ and ${x^2} + {y^2} + 10y + 24 = 0$ are of same length, are

If the length of tangent drawn from the point $(5, 3)$ to the circle ${x^2} + {y^2} + 2x + ky + 17 = 0$ be $7$, then $k$ =