10-1.Circle and System of Circles
hard

Let the lengths of intercepts on $x$ -axis and $y$ -axis made by the circle $x^{2}+y^{2}+a x+2 a y+c=0$ $(a < 0)$ be $2 \sqrt{2}$ and $2 \sqrt{5}$, respectively. Then the shortest distance from origin to a tangent to this circle which is perpendicular to the line $x +2 y =0,$ is euqal to :

A

$\sqrt{11}$

B

$\sqrt{7}$

C

$\sqrt{6}$

D

$\sqrt{10}$

(JEE MAIN-2021)

Solution

$x ^{2}+ y ^{2}+ ax +2 ay + c =0$

$2 \sqrt{ g ^{2}- c }=2 \sqrt{\frac{ a ^{2}}{4}- c }=2 \sqrt{2}$

$\Rightarrow \quad \frac{ a ^{2}}{4}- c =2…….(1)$

$2 \sqrt{ f ^{2}- c }=2 \sqrt{ a ^{2}- c }=2 \sqrt{5}$

$\Rightarrow a^{2}-c=5……(2)$

$(1)$ and $(2)$

$\frac{3 a ^{2}}{4}=3 \Rightarrow a =-2 \quad( a < 0)$

$\therefore \quad c=-1$

Circle $\Rightarrow x^{2}+y^{2}-2 x-4 y-1=0$

$\Rightarrow(x-1)^{2}+(y-2)^{2}=6$

Given $x+2 y=0 \Rightarrow m=-\frac{1}{2}$

$m _{\text {tangent }}=2$

Equation of tangent

$\Rightarrow(y-2)=2(x-1) \pm \sqrt{6} \sqrt{1+4}$

$\Rightarrow 2 x-y \pm \sqrt{30}=0$

Perpendicular distance from $(0,0)=\left|\frac{\pm \sqrt{30}}{\sqrt{4+1}}\right|=\sqrt{6}$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.