- Home
- Standard 11
- Mathematics
10-1.Circle and System of Circles
medium
If $\frac{x}{\alpha } + \frac{y}{\beta } = 1$ touches the circle ${x^2} + {y^2} = {a^2}$, then point $(1/\alpha ,\,1/\beta )$ lies on a/an
A
Straight line
B
Circle
C
Parabola
D
Ellipse
Solution
(b) $y = – \frac{\beta }{\alpha }x + \beta $ touches the circle,
${\beta ^2} = {a^2}\left( {1 + \frac{{{\beta ^2}}}{{{\alpha ^2}}}} \right)$
==> $\frac{1}{{{\alpha ^2}}} + \frac{1}{{{\beta ^2}}}$
$= \frac{1}{{{a^2}}}$
Locus of $\left( {\frac{1}{\alpha },\frac{1}{\beta }} \right)$ is ${x^2} + {y^2}$
$= {\left( {\frac{1}{a}} \right)^2}$.
Standard 11
Mathematics