यदि $\frac{x}{\alpha } + \frac{y}{\beta } = 1$ वृत्त ${x^2} + {y^2} = {a^2}$ को स्पर्श करती है, तब बिन्दु $(1/\alpha ,\,1/\beta )$ होगा
सरल रेखा पर
वृत्त पर
परवलय पर
दीर्घवृत्त पर
वृत्त ${x^2} + {y^2} = {a^2}$ पर रेखा $\sqrt 3 x + y + 3 = 0$ के समान्तर स्पर्श रेखाओं के समीकरण हैं
बिन्दु $(4, 3)$ से वृत्त ${x^2} + {y^2} = 9$ पर स्पर्श रेखाएँ खींची गयी हैं। इन स्पर्श रेखाओं और इनके स्पर्श बिन्दुओं को मिलाने वाली रेखा से बने त्रिभुज का क्षेत्रफल है
वृत्त ${x^2} + {y^2} = 4$ के बिन्दु $(1,\sqrt 3 )$ पर खींची गयी स्पर्श रेखा एवं अभिलम्ब एवं धनात्मक $x$-अक्ष से बने त्रिभुज का क्षेत्रफल है
बिन्दु $(5, 1)$ से वृत्त ${x^2} + {y^2} + 6x - 4y - 3 = 0$ पर खींची गयी स्पर्श रेखा की लम्बाई होगी