10-2. Parabola, Ellipse, Hyperbola
hard

If the eccentricity of a hyperbola $\frac{{{x^2}}}{9} - \frac{{{y^2}}}{{{b^2}}} = 1,$ which passes through $(K, 2),$ is $\frac{{\sqrt {13} }}{3},$ then the value of $K^2$ is

A

$18$

B

$8$

C

$1$

D

$2$

(AIEEE-2012)

Solution

given hyperbola is 

$\frac{{{x^2}}}{9} – \frac{{{y^2}}}{{{b^2}}} = 1$

Since this passes through $(K,2)$, therfore

$\frac{{{K^2}}}{9} – \frac{4}{{{b^2}}} = 1\,\,\,\,\,\,….\left( 1 \right)$

Also, given  $e = \sqrt {1 + \frac{{{b^2}}}{{{a^2}}}}  = \frac{{\sqrt {13} }}{3}$

$ \Rightarrow \sqrt {1 + \frac{{{b^2}}}{{{a^2}}}}  = \frac{{\sqrt {13} }}{3} \Rightarrow 9 + {b^2} = 13$

$ \Rightarrow b =  \pm 2$

Now, from $e{q^n}$ $(1)$, we have 

$\frac{{{K^2}}}{9} – \frac{4}{4} = 1$        ($\because$  $b =  \pm 2$)

$ \Rightarrow {K^2} = 18$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.