If the eccentricity of a hyperbola $\frac{{{x^2}}}{9} - \frac{{{y^2}}}{{{b^2}}} = 1,$ which passes through $(K, 2),$ is $\frac{{\sqrt {13} }}{3},$ then the value of $K^2$ is
$18$
$8$
$1$
$2$
lf $e_1$ , $e_2$ and $e_3$ are eccentricities of the conics $y = {x^2} - x + 3,\,\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{3{a^4}}} = 1$ and ${a^2}{x^2} - 3{a^4}{y^2} = 1$ respectively, then which of the following is correct ? (where $a > 1)$
A hyperbola whose transverse axis is along the major axis of then conic, $\frac{{{x^2}}}{3} + \frac{{{y^2}}}{4} = 4$ and has vertices at the foci of this conic . If the eccentricity of the hyperbola is $\frac{3}{2}$ , then which of the following points does $NOT$ lie on it ?
The vertices of a hyperbola are at $(0, 0)$ and $(10, 0)$ and one of its foci is at $(18, 0)$. The equation of the hyperbola is
The equation to the hyperbola having its eccentricity $2$ and the distance between its foci is $8$
The locus of the middle points of the chords of hyperbola $3{x^2} - 2{y^2} + 4x - 6y = 0$ parallel to $y = 2x$ is