Let $P(x)$ be a polynomial with real coefficients such that $P\left(\sin ^2 x\right)=P\left(\cos ^2 x\right)$ for all $x \in[0, \pi / 2)$. Consider the following statements:
$I.$ $P(x)$ is an even function.
$II.$ $P(x)$ can be expressed as a polynomial in $(2 x-1)^2$
$III.$ $P(x)$ is a polynomial of even degree.
Then,
all are false
only $I$ and $II$ are true
only $II$ and $III$ are true
all are true
If $\theta$ is small $\&$ positive number then which of the following is/are correct ?
Which of the following function is surjective but not injective
Let $f(x)=\frac{x-1}{x+1}, x \in R-\{0,-1,1)$. If $f^{a+1}(x)=f\left(f^{n}(x)\right)$ for all $n \in N$, then $f^{\prime}(6)+f(7)$ is equal to
Let $f(x) = \frac{{x\,\, - \,\,1}}{{2\,{x^2}\,\, - \,\,7x\,\, + \,\,5}}$ . Then :
The value of $\sum \limits_{n=0}^{1947} \frac{1}{2^n+\sqrt{2^{1994}}}$ is equal to