If $\phi (x) = {a^x}$, then ${\{ \phi (p)\} ^3} $ is equal to

  • A

    $\phi (3p)$

  • B

    $3\phi (p)$

  • C

    $6\phi (p)$

  • D

    $2\phi (p)$

Similar Questions

Let $[t]$ be the greatest integer less than or equal to $t$. Let $A$ be the set of al prime factors of $2310$ and $f: A \rightarrow \mathbb{Z}$ be the function $f(x)=\left[\log _2\left(x^2+\left[\frac{x^3}{5}\right]\right)\right]$. The number of one-to-one functions from $A$ to the range of $f$ is :

  • [JEE MAIN 2024]

If $a, b$ be two fixed positive integers such that $f(a + x) = b + {[{b^3} + 1 - 3{b^2}f(x) + 3b{\{ f(x)\} ^2} - {\{ f(x)\} ^3}]^{\frac{1}{3}}}$ for all real $x$, then $f(x)$ is a periodic function with period

Which of the following is correct

If $f(x) = \log \left[ {\frac{{1 + x}}{{1 - x}}} \right]$, then $f\left[ {\frac{{2x}}{{1 + {x^2}}}} \right]$ is equal to

The function $f(x) = \frac{{{{\sec }^{ - 1}}x}}{{\sqrt {x - [x]} }},$ where $[.]$ denotes the greatest integer less than or equal to $x$  is defined for all  $x$  belonging to