જો $f(x) = 2\sin x$, $g(x) = {\cos ^2}x$, તો $(f + g)\left( {\frac{\pi }{3}} \right) = $
$1$
$\frac{{2\sqrt 3 + 1}}{4}$
$\sqrt 3 + \frac{1}{4}$
એકપણ નહી.
જો વિધેય એ $f(x + y) = f(x)f(y)$ શરતનું પાલન કરે કે જયાં $x,\;y \in N$ હોય અને $f(1) = 3$અને $\sum\limits_{x = 1}^n {f(x) = 120} $ હોય તો $n$ ની કિંમત મેળવો
વિધેય $\cos ^{-1}\left(\frac{2 \sin ^{-1}\left(\frac{1}{4 x^{2}-1}\right)}{\pi}\right)$ નો પ્રદેશ $\dots\dots$છે.
જો $\,\,f(x) = \left\{ {\begin{array}{*{20}{c}}
{3 + x;\,\,\,\,\,x \geqslant 0} \\
{2 - 3x;\,\,\,\,\,x < 0}
\end{array}} \right.$ હોય તો $\mathop {\lim }\limits_{x \to 0} f(f(x))$ ની કિમત મેળવો.
જો $f(x) = \left\{ {\begin{array}{*{20}{c}}
{\,{x^3} - {x^2} + 10x - 5\,\,,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,x \le 1\,\,\,\,\,\,\,\,\,\,\,\,}\\
{ - 2x + {{\log }_2}({b^2} - 2),\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,x\, > 1\,\,\,\,\,\,\,\,\,\,\,\,}
\end{array}} \right.$ હોય તો $b$ ની કઇ કિમતો માટે $f(x)$ ની $x = 1$ મહત્તમ કિમત મળે
જો વિધેય $f\,:\,R - \,\{ 1, - 1\} \to A$ ; $f\,(x)\, = \frac{{{x^2}}}{{1 - {x^2}}}$ એ વ્યાપ્ત વિધેય હોય તો $A$ મેળવો .