Let $f(x) = {(x + 1)^2} - 1,\;\;(x \ge - 1)$. Then the set $S = \{ x:f(x) = {f^{ - 1}}(x)\} $ is
Empty
$\{0, -1\}$
$\{0, 1, -1\}$
$\left\{ {0,\; - 1,\;\frac{{ - 3 + i\sqrt 3 }}{2},\;\frac{{ - 3 - i\sqrt 3 }}{2}} \right\}$
Range of ${\sin ^{ - 1\,}}\left( {\frac{{1 + {x^2}}}{{2 + {x^2}}}} \right)$ is
The range of $f(x) = \cos (x/3)$ is
If $f$ is a function satisfying $f(x+y)=f(x) f(y)$ for all $x, y \in N$ such that $f(1)=3$ and $\sum\limits_{x = 1}^n {f\left( x \right) = 120,} $ find the value of $n$
Show that none of the operations given above has identity.
Domain of the function $f(x) = \sqrt {2 - {{\sec }^{ - 1}}x} $ is