If $f(x) = \frac{x}{{x - 1}} = \frac{1}{y}$, then $f(y) = $

  • A

    $x$

  • B

    $x + 1$

  • C

    $x - 1$

  • D

    $1 - x$

Similar Questions

If $f(x)$ and $g(x)$ are two polynomials such that the polynomial $P ( x )=f\left( x ^{3}\right)+ xg \left( x ^{3}\right)$ is divisible by $x^{2}+x+1,$ then $P(1)$ is equal to ....... .

  • [JEE MAIN 2021]

If the domain of the function $f(x)=\sec ^{-1}\left(\frac{2 x}{5 x+3}\right)$ is $[\alpha, \beta) \cup(\gamma, \delta]$, then $|3 \alpha+10(\beta+\gamma)+21 \delta|$ is equal to $.......$.

  • [JEE MAIN 2023]

Let ${f_k}\left( x \right) = \frac{1}{k}\left( {{{\sin }^k}x + {{\cos }^k}x} \right)\;,x \in R$ and $k \ge 1$, then ${f_4}\left( x \right) - {f_6}\left( x \right)$ is equal to

  • [JEE MAIN 2014]

Let $f(x)$ and $g(x)$ be two functions given by $f\left( x \right) = \frac{{2\sin \pi x}}{x}$ and $g\left( x \right) = f\left( {1 - x} \right) + f\left( x \right).$ If $g\left( x \right) = kf(\frac{x}{2})f\left( {\frac{{1 - x}}{2}} \right)$,then the value of $k$ is

Suppose $f:[2,\;2] \to R$ is defined by $f(x) = \left\{ \begin{array}{l} - 1\,\,\,\,\,\,\,\,\,\,\,\,\,{\rm{for}}\; - 2 \le x \le 0\\x - 1\;\;\;\;\;{\rm{for}}\;0 \le x \le 2\end{array} \right.$, then $\{ x \in ( - 2,\;2):x \le 0$ and $f(|x|) = x\} = $