Let $f(x) = sin\,x,\,\,g(x) = x.$

Statement $1:$ $f(x)\, \le \,g\,(x)$ for $x$ in $(0,\infty )$

Statement $2:$ $f(x)\, \le \,1$ for $(x)$ in $(0,\infty )$ but $g(x)\,\to \infty$ as $x\,\to \infty$

  • [AIEEE 2012]
  • A

    Statement $1$ is true, Statement $2$ is false.

  • B

    Statement $1$ is true, Statement $2$ is true,Statement $2$ is a correct explanation for Statement $1.$

  • C

    Statement $1$ is true, Statement $2$ is true,Statement $2$ is not a correct explanation for Statement $1.$

  • D

    Statement $1$ is false, Statement $2$ is true.

Similar Questions

The period of the function $f (x) =$$\frac{{|\sin x| + |\cos x|}}{{|\sin x - \cos x|}}$  is

$f : R \to R$ is defined as

$f(x) = \left\{ {\begin{array}{*{20}{c}}
{{x^2} + 2mx - 1\,,}&{x \leq 0}\\
{mx - 1\,\,\,\,\,\,\,\,\,\,\,\,\,,}&{x > 0}
\end{array}} \right.$

 If $f (x)$ is one-one then the set of values of $'m'$ is

Let $f(x)$ and $g(x)$ be two functions given by $f\left( x \right) = \frac{{2\sin \pi x}}{x}$ and $g\left( x \right) = f\left( {1 - x} \right) + f\left( x \right).$ If $g\left( x \right) = kf(\frac{x}{2})f\left( {\frac{{1 - x}}{2}} \right)$,then the value of $k$ is

Let $f : R \to R$ be a function defined by $f(x) =  - \frac{{|x{|^3} + |x|}}{{1 + {x^2}}}$; then the graph of $f(x)$ is lies in the :-

The sentence, What is your Name ? is