Let $f(x) = sin\,x,\,\,g(x) = x.$

Statement $1:$ $f(x)\, \le \,g\,(x)$ for $x$ in $(0,\infty )$

Statement $2:$ $f(x)\, \le \,1$ for $(x)$ in $(0,\infty )$ but $g(x)\,\to \infty$ as $x\,\to \infty$

  • [AIEEE 2012]
  • A

    Statement $1$ is true, Statement $2$ is false.

  • B

    Statement $1$ is true, Statement $2$ is true,Statement $2$ is a correct explanation for Statement $1.$

  • C

    Statement $1$ is true, Statement $2$ is true,Statement $2$ is not a correct explanation for Statement $1.$

  • D

    Statement $1$ is false, Statement $2$ is true.

Similar Questions

The maximum value of function $f(x) = \int\limits_0^1 {t\,\sin \,\left( {x + \pi t} \right)} dt,\,x \in \,R$ is

The number of bijective functions $f :\{1,3,5, 7, \ldots \ldots . .99\} \rightarrow\{2,4,6,8, \ldots \ldots, 100\}$, such that $f(3) \geq f(9) \geq f(15) \geq f(21) \geq \ldots \ldots f(99), \quad$ is

  • [JEE MAIN 2022]

If domain of function $f(x) = \sqrt {\ln \left( {m\sin x + 4} \right)} $ is $R$ , then number of possible integral values of $m$ is

If $P(S)$ denotes the set of all subsets of a given set $S, $ then the number of one-to-one functions from the set $S = \{ 1, 2, 3\}$ to the set $P(S)$ is

  • [AIEEE 2012]

Function ${\sin ^{ - 1}}\sqrt x $ is defined in the interval