1.Relation and Function
hard

Let $f(x) = sin\,x,\,\,g(x) = x.$

Statement $1:$ $f(x)\, \le \,g\,(x)$ for $x$ in $(0,\infty )$

Statement $2:$ $f(x)\, \le \,1$ for $(x)$ in $(0,\infty )$ but $g(x)\,\to \infty$ as $x\,\to \infty$

A

Statement $1$ is true, Statement $2$ is false.

B

Statement $1$ is true, Statement $2$ is true,Statement $2$ is a correct explanation for Statement $1.$

C

Statement $1$ is true, Statement $2$ is true,Statement $2$ is not a correct explanation for Statement $1.$

D

Statement $1$ is false, Statement $2$ is true.

(AIEEE-2012)

Solution

Let $f\left( x \right) = \sin \,x$ and $f\left( x \right) = \sin \,x$

Statement-$1$ : $f\left( x \right) \le gx\left( {\forall x} \right) \in \left( {0,\infty } \right)$

i.e, $\sin \,x \le x\forall x \in \left( {0,\infty } \right)$

which is true

Statement-$2$ : $f\left( x \right) \le 1\forall x \in \left( {0,\infty } \right)$

i.e., $\sin \,x \le 1\forall x \in \left( {0,\infty } \right)$

It is true and 

$g\left( x \right) = x \to \infty $ as $x \to \infty $ also true.

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.