Let $\mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}$ be defined as
$f(x+y)+f(x-y)=2 f(x) f(y), f\left(\frac{1}{2}\right)=-1 .$ Then, the value of $\sum_{\mathrm{k}=1}^{20} \frac{1}{\sin (\mathrm{k}) \sin (\mathrm{k}+\mathrm{f}(\mathrm{k}))}$ is equal to:
$\operatorname{cosec}^{2}(1) \operatorname{cosec}(21) \sin (20)$
$\sec ^{2}(1) \sec (21) \cos (20)$
$\operatorname{cosec}^{2}(21) \cos (20) \cos (2)$
$\sec ^{2}(21) \sin (20) \sin (2)$
Let $f(x) = (1 + {b^2}){x^2} + 2bx + 1$ and $m(b)$ the minimum value of $f(x)$ for a given $b$. As $b$ varies, the range of $m(b)$ is
Suppose $f:[2,\;2] \to R$ is defined by $f(x) = \left\{ \begin{array}{l} - 1\,\,\,\,\,\,\,\,\,\,\,\,\,{\rm{for}}\; - 2 \le x \le 0\\x - 1\;\;\;\;\;{\rm{for}}\;0 \le x \le 2\end{array} \right.$, then $\{ x \in ( - 2,\;2):x \le 0$ and $f(|x|) = x\} = $
The domain of definition of the function $y(x)$ given by ${2^x} + {2^y} = 2$ is
If $f(x)=\frac{\left(\tan 1^{\circ}\right) x+\log _{\varepsilon}(123)}{x \log _{\varepsilon}(1234)-\left(\tan 1^{\circ}\right)}, x > 0$, then the least value of $f(f(x))+f\left(f\left(\frac{4}{x}\right)\right)$ is $...........$.
The number of one-one function $f :\{ a , b , c , d \} \rightarrow$ $\{0,1,2, \ldots ., 10\}$ such that $2 f(a)-f(b)+3 f(c)+$ $f ( d )=0$ is