1.Relation and Function
easy

यदि $f({x_1}) - f({x_2}) = f\left( {\frac{{{x_1} - {x_2}}}{{1 - {x_1}{x_2}}}} \right)$, ${x_1},{x_2} \in [ - 1,\,1]$ के लिए, तब $f(x)$ है

A

$\log \frac{{(1 - x)}}{{(1 + x)}}$

B

${\tan ^{ - 1}}\frac{{(1 - x)}}{{(1 + x)}}$

C

$\log \frac{{(1 + x)}}{{(1 - x)}}$

D

उपरोक सभि

Solution

(a,b,c) जब ${x_1} = – 1$ व ${x_2} = 1$, तब

$f( – 1) – f(1) = f\left[ {\frac{{ – 1 – 1}}{{1 + 1(1)}}} \right] = f( – 1) \Rightarrow f(1) = 0$

जो कि संतुष्ट होता है, जब $f(x) = {\tan ^{ – 1}}\left( {\frac{{1 – x}}{{1 + x}}} \right)$

जब ${x_1} = {x_2} = 0$, तब

$f(0) – f(0) = f\left[ {\frac{{0 – 0}}{{1 – 0}}} \right] = f(0) \Rightarrow f(0) = 0$

जब ${x_1} = – 1$ व ${x_2} = 0$ तब

$f( – 1) – f(0) = f\left( {\frac{{ – 1 – 0}}{{1 – 0}}} \right) = f( – 1) \Rightarrow f(0) = 0$

जो कि संतुष्ट है जब $f(x) = \log \left( {\frac{{1 – x}}{{1 + x}}} \right)$ और

$f(x) = \log \left( {\frac{{1 + x}}{{1 – x}}} \right)$.

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.