यदि $f({x_1}) - f({x_2}) = f\left( {\frac{{{x_1} - {x_2}}}{{1 - {x_1}{x_2}}}} \right)$, ${x_1},{x_2} \in [ - 1,\,1]$ के लिए, तब $f(x)$ है
$\log \frac{{(1 - x)}}{{(1 + x)}}$
${\tan ^{ - 1}}\frac{{(1 - x)}}{{(1 + x)}}$
$\log \frac{{(1 + x)}}{{(1 - x)}}$
उपरोक सभि
माना एक अवकलनीय फलन $\mathrm{f}: \mathrm{R} \rightarrow(0, \infty)$ के लिए $5 f(x+y)=f(x) \cdot f(y), \forall x, y \in R$ है। यदि $\mathrm{f}(3)=320$, तो $\sum_{\mathrm{n}=0}^5 \mathrm{f}(\mathrm{n})$ बराबर है :
फलन ${\sin ^{ - 1}}\sqrt x $ निम्न अंतराल में परिभाषित है
एकैकी आच्छादक फलनों $f :\{1,3,5,7, \ldots . .99\} \rightarrow\{2,4,6,8, \ldots \ldots ., 100\}$
जिनके लिए $f(3) \geq f(9) \geq f(15) \geq f(21) \geq \ldots . \geq f(99)$ हैं, की संख्या है
माना $f ( x )= ax ^2+ bx + c$ है, जिसके लिए $f (1)=3, f (-2)=\lambda$ तथा $f (3)=4$. हैं। यदि $f (0)+ f (1)+ f (-2)+ f (3)=14$ है, तो $\lambda$ बराबर है
माना $f(n)=\left[\frac{1}{3}+\frac{3 n}{100}\right] n$, जहाँ $[n]$ एक महत्तम पूणांक, जो $n$ से छोटा अथवा बराबर है, तो $\sum_{ n =1}^{56} f(u)$ बराबर है