- Home
- Standard 12
- Mathematics
If $f$ is an even function defined on the interval $(-5, 5),$ then four real values of $x$ satisfying the equation $f(x) = f\left( {\frac{{x + 1}}{{x + 2}}} \right)$ are
$\frac{{ - 3 - \sqrt 5 }}{2},\;\frac{{ - 3 + \sqrt 5 }}{2},\;\frac{{3 - \sqrt 5 }}{2},\;\frac{{3 + \sqrt 5 }}{2}$
$\frac{{ - 5 + \sqrt 3 }}{2},\;\frac{{ - 3 + \sqrt 5 }}{2},\;\frac{{3 + \sqrt 5 }}{2},\;\frac{{3 - \sqrt 5 }}{2}$
$\frac{{3 - \sqrt 5 }}{2},\;\frac{{3 + \sqrt 5 }}{2},\;\frac{{ - 3 - \sqrt 5 }}{2},\;\frac{{5 + \sqrt 3 }}{2}$
$ - 3 - \sqrt 5 ,\; - 3 + \sqrt 5 ,\;3 - \sqrt 5 ,\;3 + \sqrt 5 $
Solution
(a) Since $f$ is an even function $f\,( – x) = f(x)\,,\forall x \in ( – 5,\,5).$
We are given that $f(x) = f\,\left( {\frac{{x + 1}}{{x + 2}}} \right)$
$ \Rightarrow \,\,f( – x) = f\left( {\frac{{ – x + 1}}{{ – x + 2}}} \right)\, \Rightarrow \,\,f(x) = f\,\left( {\frac{{ – x + 1}}{{ – x + 2}}} \right)$
To find the values of $x$, we set
$x = \frac{{ – x + 1}}{{ – x + 2}}\,\, \Rightarrow \,\,x = \frac{{3 \pm \sqrt {9 – 4} }}{2} = \frac{{3 \pm \sqrt 5 }}{2}$
Also $f(x) = f\,\left( {\frac{{x + 1}}{{x + 2}}} \right) = f( – x)$
To find the values of $x$, we set
$ – x = \frac{{x + 1}}{{x + 2}}\,\, \Rightarrow \,\,x = \frac{{ – 3 \pm \sqrt {9 – 4} }}{2} = \frac{{ – 3 \pm \sqrt 5 }}{2}$
Thus the four required values of $x$ are
$\frac{{ – 3 – \sqrt 5 }}{2},\,\frac{{ – 3 + \sqrt 5 }}{2},\,\frac{{3 – \sqrt 5 }}{2},\,\frac{{3 + \sqrt 5 }}{2}.$