If $f$ is an even function defined on the interval $(-5, 5),$ then four real values of $x$ satisfying the equation $f(x) = f\left( {\frac{{x + 1}}{{x + 2}}} \right)$ are
$\frac{{ - 3 - \sqrt 5 }}{2},\;\frac{{ - 3 + \sqrt 5 }}{2},\;\frac{{3 - \sqrt 5 }}{2},\;\frac{{3 + \sqrt 5 }}{2}$
$\frac{{ - 5 + \sqrt 3 }}{2},\;\frac{{ - 3 + \sqrt 5 }}{2},\;\frac{{3 + \sqrt 5 }}{2},\;\frac{{3 - \sqrt 5 }}{2}$
$\frac{{3 - \sqrt 5 }}{2},\;\frac{{3 + \sqrt 5 }}{2},\;\frac{{ - 3 - \sqrt 5 }}{2},\;\frac{{5 + \sqrt 3 }}{2}$
$ - 3 - \sqrt 5 ,\; - 3 + \sqrt 5 ,\;3 - \sqrt 5 ,\;3 + \sqrt 5 $
If the range of $f(x) = \frac{2x^2-14x^2-8x+49}{x^4-7x^2-4x+23}$ is ($a, b$], then ($a +b$) is
Let $f ( x )$ be a quadratic polynomial with leading coefficient $1$ such that $f(0)=p, p \neq 0$ and $f(1)=\frac{1}{3}$. If the equation $f(x)=0$ and $fofofof (x)=0$ have a common real root, then $f(-3)$ is equal to $........$
solve $\frac{{1 - \left| x \right|}}{{2 - \left| x \right|}} \ge 0$
If $a+\alpha=1, b+\beta=2$ and $\operatorname{af}(x)+\alpha f\left(\frac{1}{x}\right)=b x+\frac{\beta}{x}, x \neq 0,$ then the value of expression $\frac{ f ( x )+ f \left(\frac{1}{ x }\right)}{ x +\frac{1}{ x }}$ is ..... .
For a real number $x,\;[x]$ denotes the integral part of $x$. The value of $\left[ {\frac{1}{2}} \right] + \left[ {\frac{1}{2} + \frac{1}{{100}}} \right] + \left[ {\frac{1}{2} + \frac{2}{{100}}} \right] + .... + \left[ {\frac{1}{2} + \frac{{99}}{{100}}} \right]$ is