જો $f$ એ યુગ્મ વિધેય છે કે અંતરાલ$(-5, 5)$ માં વ્યાખ્યાયિત હોય , તો $ x$ ની ચાર કિમતો મેળવો કે જે સમીકરણ $f(x) = f\left( {\frac{{x + 1}}{{x + 2}}} \right)$ નું સમાધાન કરે.
$\frac{{ - 3 - \sqrt 5 }}{2},\;\frac{{ - 3 + \sqrt 5 }}{2},\;\frac{{3 - \sqrt 5 }}{2},\;\frac{{3 + \sqrt 5 }}{2}$
$\frac{{ - 5 + \sqrt 3 }}{2},\;\frac{{ - 3 + \sqrt 5 }}{2},\;\frac{{3 + \sqrt 5 }}{2},\;\frac{{3 - \sqrt 5 }}{2}$
$\frac{{3 - \sqrt 5 }}{2},\;\frac{{3 + \sqrt 5 }}{2},\;\frac{{ - 3 - \sqrt 5 }}{2},\;\frac{{5 + \sqrt 3 }}{2}$
$ - 3 - \sqrt 5 ,\; - 3 + \sqrt 5 ,\;3 - \sqrt 5 ,\;3 + \sqrt 5 $
ધારો કે વિધેય $f: R \rightarrow R$ માટે $f(x+y)=f(x) f(y)$ બધા $x, y \in R$ અને $f(1)=3$ થાય જો $\sum \limits_{i=1}^{n} f(i)=363,$ હોય તો $n$ ની કિમત શોધો
ધારોકે $f: R \rightarrow R$ એ કોઈ $m$ માટે વ્યાખ્યાયિત એવુ વિધેય છે કે જયાં $f(x)=\log _{\sqrt{m}}\{\sqrt{2}(\sin x-\cos x+m-2)\}$ અને $f$ નો વિસ્તાર $[0,2]$ છે. તો $m$ નું મૂલ્ય $.........$ છે.
વિધેય $f(x) = {\sin ^{ - 1}}\left( {\frac{{2 - |x|}}{4}} \right) + {\cos ^{ - 1}}\left( {\frac{{2 - |x|}}{4}} \right) + {\tan ^{ - 1}}\left( {\frac{{2 - |x|}}{4}} \right)$ નો પ્રદેશગણ મેળવો.
વિધેય $f(x) = \frac{{{{\sin }^{ - 1}}(x - 3)}}{{\sqrt {9 - {x^2}} }}$ નો પ્રદેશ મેળવો.
$f(x) = \frac{1}{{\sqrt {{{\log }_{\frac{\pi }{4}}}({{\sin }^{ - 1}}x) - 1} }}$ નો પ્રદેશગણ મેળવો.