If $A$ and $B$ are two events such that $P\,(A \cup B)\, + P\,(A \cap B) = \frac{7}{8}$ and $P\,(A) = 2\,P\,(B),$ then $P\,(A) = $
$\frac{7}{{12}}$
$\frac{7}{{24}}$
$\frac{5}{{12}}$
$\frac{{17}}{{24}}$
An event has odds in favour $4 : 5$, then the probability that event occurs, is
Let $S=\{1,2,3, \ldots, 2022\}$. Then the probability, that a randomly chosen number $n$ from the set $S$ such that $\operatorname{HCF}( n , 2022)=1$, is.
If odds against solving a question by three students are $2 : 1 , 5:2$ and $5:3$ respectively, then probability that the question is solved only by one student is
If $A$ and $B$ are two independent events such that $P\,(A) = 0.40,\,\,P\,(B) = 0.50.$ Find $P$ (neither $A$ nor $B$)
Two aeroplanes $I$ and $II$ bomb a target in succession. The probabilities of $l$ and $II$ scoring a hit correctlyare $0.3$ and $0.2,$ respectively. The second plane will bomb only if the first misses the target. The probability that the target is hit by the second plane is