यदि $A$ तथा $B$ दो ऐसी घटनाएँ हों कि $P\,(A \cup B)\, + P\,(A \cap B) = \frac{7}{8}$ तथा $P\,(A) = 2\,P\,(B),$ तो $P\,(A) = $
$\frac{7}{{12}}$
$\frac{7}{{24}}$
$\frac{5}{{12}}$
$\frac{{17}}{{24}}$
$A$ और $B$ दो घटनाएँ इस प्रकार हैं कि $P ( A )=0.54, P ( B )=0.69$ और $P ( A \cap B )=0.35 .$
ज्ञात कीजिए
$P\left(A \cap B^{\prime}\right)$
दो घटनाओं के घटित होने की प्रायिकताएँ क्रमश: $0.21$ तथा $0.49$ हैं। दोनों के साथ-साथ घटने की प्रायिकता $0.16$ है तब दोनों में से किसी के भी घटित न होने की प्रायिकता है
घटनाएँ $A$ और $B$ इस प्रकार हैं कि $P ( A )=0.42, P ( B )=0.48$ और $P ( A$ और $B )=0.16 .$ ज्ञात कीजिए
$P ( A$ या $B )$
यदि $A , B , C$ किसी यादृच्च्छक प्रयोग के संगत तीन घटनाएँ हों तो सिद्ध कीजिए कि
$P ( A \cup B \cup C )= P ( A )+ P ( B )+ P ( C )- P ( A \cap B )- P ( A \cap C )$
$-P(B \cap C)+P(A \cap B \cap C)$
यदि घोड़े $A$ के किसी दौड़ को जीतने की प्रायिकता $1/4$ हो और घोड़े $B$ के उसी दौड़ को जीतने की प्रायिकता $1/5$ हो, तो उनमें से किसी एक के दौड़ को जीतने की प्रायिकता है