If $P(A) = \frac{1}{2},\,\,P(B) = \frac{1}{3}$ and $P(A \cap B) = \frac{7}{{12}},$ then the value of $P\,(A' \cap B')$ is
$\frac{7}{{12}}$
$\frac{3}{4}$
$\frac{1}{4}$
$\frac{1}{6}$
Four persons can hit a target correctly with probabilities $\frac{1}{2},\frac{1}{3},\frac{1}{4}$ and $\frac {1}{8}$ respectively. If all hit at the target independently, then the probability that the target would be hit, is
If $P(A) = P(B) = x$ and $P(A \cap B) = P(A' \cap B') = \frac{1}{3}$, then $x = $
Two students Anil and Ashima appeared in an examination. The probability that Anil will qualify the examination is $0.05$ and that Ashima will qualify the examination is $0.10 .$ The probability that both will qualify the examination is $0.02 .$ Find the probability that Atleast one of them will not qualify the examination.
Let $S$ be a set containing n elements and we select $2$ subsets $A$ and $B$ of $S$ at random then the probability that $A \cup B = S$ and $A \cap B = \phi $ is
If from each of the three boxes containing $3$ white and $1$ black, $2$ white and $2$ black, $1$ white and $3$ black balls, one ball is drawn at random, then the probability that $2$ white and $1$ black ball will be drawn is