If $\overrightarrow A = 2\hat i + 4\hat j - 5\hat k$ the direction of cosines of the vector $\overrightarrow A $ are
$\frac{2}{{\sqrt {45} }},\frac{4}{{\sqrt {45} }}\,{\rm{and}}\,\frac{{ - \,{\rm{5}}}}{{\sqrt {{\rm{45}}} }}$
$\frac{1}{{\sqrt {45} }},\frac{2}{{\sqrt {45} }}\,{\rm{and}}\,\frac{{\rm{3}}}{{\sqrt {{\rm{45}}} }}$
$\frac{4}{{\sqrt {45} }},\,0\,{\rm{and}}\,\frac{{\rm{4}}}{{\sqrt {45} }}$
$\frac{3}{{\sqrt {45} }},\frac{2}{{\sqrt {45} }}\,{\rm{and}}\,\frac{{\rm{5}}}{{\sqrt {{\rm{45}}} }}$
Explain position and displacement vectors. How the magnitude of vector quantity is represented ?
Pick out the only vector quantity in the following list:
Temperature, pressure, impulse, time, power, total path length, energy, gravitational potential, coefficient of friction, charge.
Let $\theta$ be the angle between vectors $\vec{A}$ and $\vec{B}$. Which of the following figures correctly represents the angle $\theta$ ?
The angle made by the vector $A = \hat i + \hat j$ with $x-$ axis is ....... $^o$
Distinguish between Vector quantity and a Scalar quantity.