- Home
- Standard 11
- Mathematics
यदि $P$ और $Q$ वृत्त $x^{2}+y^{2}+3 x+7 y+2 p-5=0$ तथा $x^{2}+y^{2}+2 x+2 y-p^{2}=0$ के प्रतिच्छेद बिन्दु हैं तब $P, Q$ और $(1,1)$ से जाने वाला एक वृत्त है
एक के अलावा $p$ के सभी मानों के लिए
$p$ के सभी मानों के लिए
दो के अलावा $p$ के सभी मानों के लिए
$p$ के ठीक एक मान के लिए
Solution
The radical axis, which in the case of the intersection of the circles is the common chord, of the
circles
$S_{1}: x^{2}+y^{2}+3 x+7 y+2 p-5=0$ and $S_{2}: x^{2}+y^{2}+2 x+2 y-p^{2}=0$ is
$S_{1}-S_{2}=0 \Rightarrow x+5 y+2 p-5+p^{2}=0 \ldots(i)$
If there is a circle passing through $P, Q$ and (1,1) it's necessary and sufficient that (1,1) doesn't lie on PQ, i.e.
$1+5+2 p-5+p^{2} \neq 0$
$\Rightarrow p^{2}+2 p+1 \neq 0 \Rightarrow(p+1)^{2} \neq 0$
$\therefore p \neq-1$
Thus for all values of $p$ except $^{\prime}-1^{\prime}$ there is a circle passing through $P, Q$ and (1,1)