- Home
- Standard 12
- Mathematics
5. Continuity and Differentiation
medium
The function $f(x) = {(x - 3)^2}$ satisfies all the conditions of mean value theorem in $[3, 4].$ A point on $y = {(x - 3)^2}$, where the tangent is parallel to the chord joining $ (3, 0)$ and $(4, 1)$ is
A
$\left( {{7 \over 2},{1 \over 2}} \right)$
B
$\left( {{7 \over 2},{1 \over 4}} \right)$
C
$(1, 4)$
D
$(4, 1)$
Solution
(b) Let the point be $({x_1},\,{y_1}).$ Therefore ${y_1} = {({x_1} – 3)^2}$ …..$(i)$
Now slope of the tangent at $({x_1},\,{y_1})$ is $2({x_1} – 3),$ but it is equal to $ 1.$
Therefore, $2({x_1} – 3) = 1 \Rightarrow {x_1} = \frac{7}{2}$
$\therefore {y_1} = {\left( {\frac{7}{2} – 3} \right)^2} = \frac{1}{4}$.
Hence the point is $\left( {\frac{7}{2},\frac{1}{4}} \right)$.
Standard 12
Mathematics