यदि $f$ तथा $g,\,[0,1]$ में अवकलनीय फलन हैं जो $f(0)=2=g(1)$, $g(0)=0$ और $f(1)=6$ को संतुष्ट करते हैं, तो किसी $c \in] 0,[1$ के लिए:
$f'\left( c \right) = g'\left( c \right)$
$f'\left( c \right) = 2g'\left( c \right)$
$2f'\left( c \right) = g'\left( c \right)$
$2f'\left( c \right) = 3g'\left( c \right)$
जाँच कीजिए कि क्या रोले का प्रमेय निम्नलिखित फलनों में से किन-किन पर लागू होता है। इन उदाहरणों से क्या आप रोले के प्रमेय के विलोम के बारे में कुछ कह सकते हैं?
$f(x)=x^{2}-1$ के लिए $x \in [1,2]$
मध्यमान प्रमेय $f(b) - f(a) = (b - a)f'(c)$ में यदि $a = 4$, $b = 9$ तथा $f(x) = \sqrt x $ हो, तो $c$ का मान है
यदि फलन $f(x) = a{x^3} + b{x^2} + 11x - 6$ रोले प्रमेय की शतोर्ं को अन्तराल $[1, 3]$ के लिए सन्तुष्ट करता है तथा $f'\left( {2 + \frac{1}{{\sqrt 3 }}} \right) = 0$, तब $a$ और $b$ के मान क्रमश: हैं
फलन $f(x) = {x^2} - 4$ के लिये रोले प्रमेय किस अन्तराल में सत्य है
माना $f$ कोई फलन है जोकि $[ a , b ]$ में संतत तथा $( a , b )$ में दो बार अवकलनीय है। यदि सभी $x \in( a , b )$ के लिए $f^{\prime}( x ) > 0$ तथा $f^{\prime \prime}( x )<0$ हैं, तो किसी भी $c \in( a , b )$, के लिए $\frac{f( c )-f( a )}{f( b )-f( c )}$ निम्न में से किससे बड़ा है?