If $\alpha ,\;\beta ,\;\gamma $ are the geometric means between $ca,\;ab;\;ab,\;bc;\;bc,\;ca$ respectively where $a,\;b,\;c$ are in A.P., then ${\alpha ^2},\;{\beta ^2},\;{\gamma ^2}$ are in

  • A

    $A.P.$

  • B

    $H.P.$

  • C

    $G.P.$

  • D

    None of the above

Similar Questions

If $x,y,z$  are in $A.P.$ and  ${\tan ^{ - 1}}x,{\tan ^{ - 1}}y$ and ${\tan ^{ - 1}}z$ are also in other $A.P.$ then  . . . 

  • [JEE MAIN 2013]

If the sum of $n$ terms of an $A.P.$ is $\left(p n+q n^{2}\right),$ where $p$ and $q$ are constants, find the common difference.

If $1,\;{\log _y}x,\;{\log _z}y,\; - 15{\log _x}z$ are in $A.P.$, then

The sum of the integers from $1$ to $100$ which are not divisible by $3$ or $5$ is

If $a,\;b,\;c$ are in $A.P.$, then $\frac{{{{(a - c)}^2}}}{{({b^2} - ac)}} = $