$150$ workers were engaged to finish a piece of work in a certain number of days. $4$ workers dropped the second day, $4$ more workers dropped the third day and so on. It takes eight more days to finish the work now. The number of days in which the work was completed is

  • A

    $15$

  • B

    $20$

  • C

    $25$

  • D

    $30$

Similar Questions

If ${a_1},\,{a_2},....,{a_{n + 1}}$ are in $A.P.$, then $\frac{1}{{{a_1}{a_2}}} + \frac{1}{{{a_2}{a_3}}} + ..... + \frac{1}{{{a_n}{a_{n + 1}}}}$ is

The sums of $n$ terms of three $A.P.'s$ whose first term is $1$ and common differences are $1, 2, 3$ are ${S_1},\;{S_2},\;{S_3}$ respectively. The true relation is

Let $x _1, x _2 \ldots ., x _{100}$ be in an arithmetic progression, with $x _1=2$ and their mean equal to $200$ . If $y_i=i\left(x_i-i\right), 1 \leq i \leq 100$, then the mean of $y _1, y _2$, $y _{100}$ is

  • [JEE MAIN 2023]

Let $S_n$ be the sum to n-terms of an arithmetic progression $3,7,11, \ldots \ldots$. . If $40<\left(\frac{6}{\mathrm{n}(\mathrm{n}+1)} \sum_{\mathrm{k}=1}^{\mathrm{n}} \mathrm{S}_{\mathrm{k}}\right)<42$, then $\mathrm{n}$ equals

  • [JEE MAIN 2024]

If the first term of an $A.P.$ is $3$ and the sum of its first $25$ terms is equal to the sum of its next $15$ terms, then the common difference of this $A.P.$ is :

  • [JEE MAIN 2020]