$150$ workers were engaged to finish a piece of work in a certain number of days. $4$ workers dropped the second day, $4$ more workers dropped the third day and so on. It takes eight more days to finish the work now. The number of days in which the work was completed is
$15$
$20$
$25$
$30$
The value of $\sum\limits_{r = 1}^n {\log \left( {\frac{{{a^r}}}{{{b^{r - 1}}}}} \right)} $ is
Let ${S_1},{S_2},......,{S_{101}}$ be the consecutive terms of an $A.P$ . If $\frac{1}{{{S_1}{S_2}}} + \frac{1}{{{S_2}{S_3}}} + .... + \frac{1}{{{S_{100}}{S_{101}}}} = \frac{1}{6}$ and ${S_1} + {S_{101}} = 50$ , then $\left| {{S_1} - {S_{101}}} \right|$ is equal to
The number of common terms in the progressions $4,9,14,19, \ldots \ldots$, up to $25^{\text {th }}$ term and $3,6,9,12$, up to $37^{\text {th }}$ term is :
Let $a$, $b$ be two non-zero real numbers. If $p$ and $r$ are the roots of the equation $x ^{2}-8 ax +2 a =0$ and $q$ and $s$ are the roots of the equation $x^{2}+12 b x+6 b$ $=0$, such that $\frac{1}{ p }, \frac{1}{ q }, \frac{1}{ r }, \frac{1}{ s }$ are in A.P., then $a ^{-1}- b ^{-1}$ is equal to $......$