$150$ workers were engaged to finish a piece of work in a certain number of days. $4$ workers dropped the second day, $4$ more workers dropped the third day and so on. It takes eight more days to finish the work now. The number of days in which the work was completed is
$15$
$20$
$25$
$30$
If all interior angle of quadrilateral are in $AP$ . If common difference is $10^o$ , then find smallest angle ?.....$^o$
For a series $S = 1 -2 + 3\, -\, 4 … n$ terms,
Statement $-1$ : Sum of series always dependent on the value of $n$ , i.e. whether it is even or odd.
Statement $-2$ : Sum of series is $-\frac {n}{2}$ when value of $n$ is any even integer
Let $S_{n}$ be the sum of the first $n$ terms of an arithmetic progression. If $S_{3 n}=3 S_{2 n}$, then the value of $\frac{S_{4 n}}{S_{2 n}}$ is:
If ${a_1},\;{a_2},\;{a_3}.......{a_n}$ are in $A.P.$, where ${a_i} > 0$ for all $i$, then the value of $\frac{1}{{\sqrt {{a_1}} + \sqrt {{a_2}} }} + \frac{1}{{\sqrt {{a_2}} + \sqrt {{a_3}} }} + $ $........ + \frac{1}{{\sqrt {{a_{n - 1}}} + \sqrt {{a_n}} }} = $
Let $X$ be the set consisting of the first $2018$ terms of the arithmetic progression $1,6,11$,
. . . .and $Y$ be set consisting of the first $2018$ terms of the arithmetic progression $9, 16, 23$,. . . . . Then, the number of elements in the set $X \cup Y$ is. . . .